Identification of an Immunogenic Mimic of a Conserved Epitope on the Plasmodium falciparum Blood Stage Antigen AMA1 Using Virus-Like Particle (VLP) Peptide Display
نویسندگان
چکیده
We have developed a peptide display platform based on VLPs of the RNA bacteriophage MS2 that combines the high immunogenicity of VLP display with affinity selection capabilities. Random peptides can be displayed on the VLP surface by genetically inserting sequences into a surface-exposed loop of the viral coat protein. VLP-displayed peptides can then be isolated by selection using antibodies, and the VLP selectants can then be used directly as immunogens. Here, we investigated the ability of this platform to identify mimotopes of a highly conserved conformational epitope present on the Plasmodium falciparum blood-stage protein AMA1. Using 4G2, a monoclonal antibody that binds to this epitope and is a potent inhibitor of erythrocyte invasion, we screened three different VLP-peptide libraries and identified specific VLPs that bound strongly to the selecting mAb. We then tested the ability of a handful of selected VLPs to elicit anti-AMA1 antibody responses in mice. Most of the selected VLPs failed to reliably elicit AMA1 specific antibodies. However, one VLP consistently induced antibodies that cross-reacted with AMA1. Surprisingly, this VLP bound to 4G2 more weakly than the other selectants we identified. Taken together, these data demonstrate that VLP-peptide display can identify immunogenic mimics of a complex conformational epitope and illustrate the promise and challenges of this approach.
منابع مشابه
Antibodies to malaria peptide mimics inhibit Plasmodium falciparum invasion of erythrocytes.
Apical membrane antigen 1 (AMA1) is expressed on the surfaces of Plasmodium falciparum merozoites and is thought to play an important role in the invasion of erythrocytes by malaria parasites. To select for peptides that mimic conformational B-cell epitopes on AMA1, we screened a phage display library of >10(8) individual peptides for peptides bound by a monoclonal anti-AMA1 antibody, 4G2dc1, k...
متن کاملPassive immunization with a multicomponent vaccine against conserved domains of apical membrane antigen 1 and 235-kilodalton rhoptry proteins protects mice against Plasmodium yoelii blood-stage challenge infection.
During malaria parasite invasion of red blood cells, merozoite proteins bind receptors on the surface of the erythrocyte. Two candidate Plasmodium yoelii adhesion proteins are apical membrane antigen 1 (AMA1) and the 235-kDa rhoptry proteins (P235). Previously, we have demonstrated that passive immunization with monoclonal antibodies (MAbs) 45B1 and 25.77 against AMA1 and P235, respectively, pr...
متن کاملThe most polymorphic residue on Plasmodium falciparum apical membrane antigen 1 determines binding of an invasion-inhibitory antibody.
Apical membrane antigen 1 (AMA1) is currently one of the leading malarial vaccine candidates. Anti-AMA1 antibodies can inhibit the invasion of erythrocytes by Plasmodium merozoites and prevent the multiplication of blood-stage parasites. Here we describe an anti-AMA1 monoclonal antibody (MAb 1F9) that inhibits the invasion of Plasmodium falciparum parasites in vitro. We show that both reactivit...
متن کاملIn vitro studies with recombinant Plasmodium falciparum apical membrane antigen 1 (AMA1): production and activity of an AMA1 vaccine and generation of a multiallelic response.
Apical membrane antigen 1 (AMA1) is regarded as a leading malaria blood-stage vaccine candidate. While the overall structure of AMA1 is conserved in Plasmodium spp., numerous AMA1 allelic variants of P. falciparum have been described. The effect of AMA1 allelic diversity on the ability of a recombinant AMA1 vaccine to protect against human infection by different P. falciparum strains is unknown...
متن کاملCharacterization of the Duffy-Binding-Like Domain of Plasmodium falciparum Blood-Stage Antigen 332
Studies on Pf332, a major Plasmodium falciparum blood-stage antigen, have largely been hampered by the cross-reactive nature of antibodies generated against the molecule due to its high content of repeats, which are present in other malaria antigens. We previously reported the identification of a conserved domain in Pf332 with a high degree of similarity to the Duffy-binding-like (DBL) domains ...
متن کامل